XII  Differential Equations

FunctionsBrief Usage Descriptions and Examples
ode Solve ordinary differential equations. The function "ode;y_1-k*y;x" or "ode(dif(y(x),x)-y)" returns the general solution to y' - ky = x, where "y_n" is the n-th derivative of the unknown function y with respect to x
Examples ode;y_1-k*y;x || ode;z_2-3;t || ode;y_1-x**(-1/2)*y;x || ode;y_2-y_1+y-sin(x);x || ode;y_2-y_1+y-x*exp(x);x ||.
pde Solve first order linear partial differential equations (for unknown functions with two variables).
Examples pde;z_x+2*z_y;x;y || pde;z_x+z_y-x*y;x;y || pde(dif(z(x,y),x)-dif(z(x,y),y)-x*y) || pde(dif(z(x,y),x)+2*dif(z(x,y),y)) || .
ods Solve a system of first-order linear ordinary differential equations. The function "ods;t;y_1-x;x_1+y" returns the solution to the system of y'(t) - x(t) = 0 and x'(t) + y(t) = 0, where x(t) and y(t) are the unknown functions of t.
Examples ods;t;y_1-x;x_1+y || ods;s;x_1-x*y_1+2;y_1*x-x+1 ||.

Back to top