VI Differentiation

FunctionsBrief Usage Descriptions and Examples
dif The function "dif(f(x),x)" or "dif;f(x);x" returns the first derivative, and "n; keywords; c" in "dif;f(x);x;n;keyword;c" are optional, where keywords include 'rt','ic','dc','cp','ip','df','tn'. For functions with several variables, e.g., "dif;f(x,y,z);x;x;z;y" returns the partial derivatives.
Examples dif;x^2-a^2;x || dif;x^(-2/5);x;2 || dif;x^2+x^-2;x;1;rt;1 || dif;x^2-x*y^2+y^2-4;x;y || dif;x^3*y+y^2*x-10;x;2;y || dif;x^3-2*x^2-3*x-5;x;1;cp || dif;x^3-2*x^2-3*x-5;x;1;ic || dif;x^3-2*x^2-3*x-5;x;1;dc || dif;2*x^3-11*x^2+15*x;x;2;ip || dif;2*x^3-11*x^2+15*x;x;2;cu || dif;x^4-3*x^2+1;x;1;tn;1 ||
dif;1/(x-1)^0.5;x;1;df;10;0.1 ||.
idf For the equation F(x,y) = 0 in which y is implicitly defined by x, the function "idf;F(x,y);x;y;n;a,b" returns the implicit derivative of y with respect to x, where "n;a;b" are optional. By default, the order n = 1, and x = a and y = b is used to evaluate the derivative at the point (a, b).
Examples idf;x^(2/3)+y^(2/3)+2*x*y-8;x;y || idf;x^2-y^2+8;x;y;2;1;3 || idf;2*x^3-x*y-y^2;x;y;2;1;-2 ||.
grd Find gradient vector functions by "vec;grd(f(x,y,z),x,y,z)", and evaluate the gradient at a point (x,y,z) = (a,b,c) by "vec;grd(f(x,y,z),x,a,y,b,z,c)".
Examples vec;grd(x^2+y^2-z^2,x,y,z) || vec;grd(x^2+y^2-z^2,x,1,y,1,z,0) || vec;grd(x**2*z/y,x,y) || vec;grd(x*y+y*z-x*z,x,1,y,0,z,2) ||.
sf3,imf,pc3
cnt
The function "sf3;f(x,y);a;b;c;d" plots z = f(x,y), where "a;b;c;d" are optional, "[a, b]" is the interval for x, and "[c, d]" for y. The function "imf;F(x,y)" plots an implicit equation F(x,y) = 0, "cnt;f(x,y)" plots contour curves, "pc3;x(t);y(t);z(t)" plots the parametric equations (x(t), y(t), z(t)), and "ps3;x(u,v);y(u,v);z(u,v)" plots 3D surfaces for parametric equations with parameters u and v.
Examples sf3;cos(x^2+y^2);-2;2;-2;2 || pc3;2;y;y^2 || pc3;x^2;-1;x^3 || imf;2*x^2-y^2-3 || ps3;cos(u);sin(v);u || imf;2*x-y**3 || imf;3*x-y**2 || cnt;x^2-2*y^2-2 || imf;x**2-y**2 || imf;x**2-y**3 || imf;x**3-y**2 ||.
hsd Second derivative test by Hessian determinant. The function "vec;hsd(f(x,y),x,a,y,b)" returns three values "Hessian determinant, fxx, fyy" in the order, where (a, b) is a critical point of f(x,y).
Examples vec;hsd(x^2-log(y)+2*x*y-3*y,x,1,y,-1) || vec;hsd(x^2-log(y)+2*x*y-3*y,x,0.5,y,-0.5) ||.

Part II: Differentiation for Several Variables
Back to top Part 1: Differentiation for Single Variable
Back to top